今回の記事の趣旨は、JR East Train Simulator で運転できる路線のうち、京浜東北線の大宮~南浦和の区間について、最も省エネルギーとなる運転方法について追求することである。本稿では前提として、「等増分消費エネルギー則による運転時分配分を行う」「速度によらず、機器効率は92.5%、ギア効率は97.0%とする」「加速中の架線電圧は列車の位置や速度によらず1350Vとする」「補機(冷房等)による消費電力量は考慮せず、純粋に走行のみに起因するものを対象とする」「回生ブレーキによる負の消費電力量は評価しない(※ブレーキの効きとしては評価する)」「個々の運転曲線は、最大加速→惰性走行→最大減速(1段制動、残り10m程度から多段緩め)を原則とする」を置く。
では早速、大宮~南浦和の5つの駅間について、消費電力量を縦軸、運転時分を横軸に取って図示する。
図1 縦軸に消費電力量、横軸に運転時分を取った、両者の関係図(いわゆるW-T曲線) |
図2 図1を作成する際に用いた運転曲線の一例(さいたま新都心→与野) |
縦軸に消費電力量、横軸に運転時分を取り、運転曲線を複数通り作成した上でプロットすると、傾きが負で下に凸の曲線が得られる。回生電力量を考慮しない場合の消費電力量は、概ね最高速度の二乗に比例する上、最高速度を上げれば上げるほど惰性走行の時間が短くなるので、グラフの左側では傾きが急になる現象がみられる。
ここでは、大宮~南浦和の運転時分の合計を一定値としたとき、各駅間に何秒ずつ割り付けるのが最も省エネルギーであるかを論じる。この仮定は、「採時駅である大宮駅の発時刻と南浦和駅の着時刻を固定した状態で、各駅に何秒早着(もしくは延着)するのが最も省エネルギーであるか」を論じているのと同等である。「省エネルギーな列車ダイヤ作成のための簡易数理モデル」によれば、図1で言う曲線の接線の傾きがすべて同じとなる状態が、最も省エネルギーな運転時分配分とされる。図1においては、所与の運転時分に対するグラフの傾きを図示したが、大宮~さいたま新都心~与野は傾きが緩やか(運転時分が余る)で、与野~北浦和~浦和~南浦和は傾きが急(運転時分が足りない)という傾向がみられる。これらの傾向を基に、「接線の傾きがすべて同じとなる状態」を再現すると下記のようになる。
表1 運転時分の割り付け変更に伴う省エネ効果。元々の運転時分(※10月3日のアップデート以降)の配分は比較的理にかなっており、割り付けを変更した際の省エネルギー効果は思ったほど大きくはなかった。
図3 接線の傾きが全て同じになるよう運転時分を調整した状態。 |
次回は、高速域で回生ブレーキ力が不足することに起因する、ブレーキパターンの見直しによる効果について考察する予定である。
0 件のコメント:
コメントを投稿